SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.
نویسندگان
چکیده
Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.
منابع مشابه
Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria
Nitrogen-fixing root nodule symbioses (RNS) occur in two major forms-Actinorhiza and legume-rhizobium symbiosis-which differ in bacterial partner, intracellular infection pattern, and morphogenesis. The phylogenetic restriction of nodulation to eurosid angiosperms indicates a common and recent evolutionary invention, but the molecular steps involved are still obscure. In legumes, at least seven...
متن کاملIntracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?
Plant cells engage in mutualistic and parasitic endosymbioses with a wide variety of microorganisms, ranging from Gram-negative (Rhizobium, Nostoc) and Gram-positive bacteria (Frankia), to oomycetes (Phytophthora), Chytridiomycetes, Zygomycetes (arbuscular mycorrhizal fungi) and true fungi (Erysiphe, ascomycete; Puccinia, basidiomycete). Endosymbiosis is characterised by the 'symbiosome', a com...
متن کاملSpontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (N...
متن کاملThe role of the cell wall compartment in mutualistic symbioses of plants
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the ...
متن کاملRegulation of plant symbiosis receptor kinase through serine and threonine phosphorylation.
We studied the biochemical properties of a plant receptor-like kinase to gain insights into the regulatory mechanism of this largest class of plant kinases. SYMRK (symbiosis receptor kinase) is required for early signal transduction leading to plant root symbioses with nitrogen-fixing rhizobia and phosphate-acquiring arbuscular mycorrhizal fungi. Amino acid substitutions in positions critical f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 12 شماره
صفحات -
تاریخ انتشار 2008